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Symmetry Codes and Their Invariant Subcodes 

Abstract 

We deJine and study the invariant subcodes of the symmetry 

codes in order to be able to determine the algebraic properties of 

these codes.  An infinite family of self-orthogonal rate 1/2 codes 

over GF(3)) called symmetry codes, were constructed in [3].  A 

(2q + 2, q + 1) symmetry code , denoted by C(q), -xists whenever q 

is an odd prime powe. ■ -1, (mod 3).  The group of monomial transfor- 

mations leaving a symmetry code invariant is denoted by G(q).  In this 

paper we construct two subcodes of C(q) denoted by R (q) and R (q). 
a M 

Every vector in R (q) is invariant under a monomial transformation T 
o 

in  G(q)   of  odd  order  s where  s  divides   (q +   1).     Also R  (q)   is   invariant 
M 

underT but  not  vector-wise.     The dimensions   of  R   (q^   and  R   (q)   are  de- 
0 H 

termined and relations between these subcodes are given.  An isomorphism 

2q»2 
is constructed between R (q) and a subspace of W = V  '~s  .  It is 

shown that the image of R (q) is a self-orthogonal subspace of W.  The 

isomorphic images of R (17) (under an irder 3 monomial) and R (29) 
c a 

(under  an order 5  monomial)   are both demonstrated  to be  equivalent   to 

the   (12,   6)  Golay code. 

\ 
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Symmetry Codes and Their Invariant Subcodes 

by 
Pr. Vera Pless 
Project MAC 

I.  Introduction. 

This paper defines and studies the invariant subcodes of the 

symmetry codes which were originally defined in [3].  The purpose of 

this study is the illucidation of properties of these subcodes in such 

a manner that these properties can be applied in determining character- 

istics of the symmetry code itself.  For example, maximum length sec- 

tors in C(17) and C(29) can be determined from known maximum length 

vectors in the Golzy  cod^ G(5).  The minimum weights are known for the 

first five syrjnetry codes.  Estimates of the minimum weights of the 

larger symmetry codes have been obtained by locating a vector of weight 

21 in R (41) (under an order 7 monomial) a.id a vector of weight 27 in 
a 

R (53). (under an order 3 monomial).  An (n, k) error correcting code 

over GF(3) is a k-dimensional subspace of V3 = V.  The weight of a 

vector x, denoted by w(x), is the number of non-zero components it has. 

Symmetry codes are an infinite family of (2q + 2, q + 1) codes over 

GF(3) where q is an odd prime power ■ -1 (mod 3).  Each code is given 

in terms of a basis [I, S ] where I is the q x q identity matrix and 

S  is the matrix described below. 
q 

We consider the elements of GF(q) to be ordered in some fixed way, 

and with this ordering we label the first q + 1 coordinates with the 

elements of GF(q)U i00} with » taken as the first coordinate.  We label 

the second q + 1 coordinates by the same sequence of elements of 

\ 

-  ■ ■ ^ -^ 
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GF(q)U{00} with dashes on them to dlctinguish them from the first q -I- 3 

coordinate labels. When q = p is a prime, for convenience we use the 

ordering 00,0,1, ... , p-1 (and hence also <*>\   0', I1 , ... , (p-1)1 for 

the n.ght side),  by definition, S  is the (q + 1) x (q + 1) matrix 

(sii .i), i, j in GF(q)U l00), such that s^, 0 and for l" , j' / oo'. 

s.,   -X (-1), ■.!  .i - I, and s ,   , - x(J-i) where x(0) = 0. X 
1  ,00 I  * -^  >  J 

(a quadratic residue) = l,x (a non-residue) = -1. We refer to the code 

generated by [I, S ] as C(q). 

As a concrete example we write the basis for C(5) below. 

co 0 1 2 3 4  oo'  01  1'  2'  i1 41 

10    0    0    0 0      0 

0  10    0    0 0 

0 0    10    0 0 

0 0    0    10 0 

0 0    0    0    1 0 

0 0    0    0    0 1 

1111 

0       1-1-1 

10       1-1 

J       1       0       1 

•1-1       10 

1-1-1    1 

C(5) is a (12, 6) code and it is equivalent to the Golay code [2]. 

In [4] it was shown that each symmetry code is self orthogonal.  The 

transformations on V which preserve tl» weights of all vectors are the 

monomial transformations.  A monomial transformation can be viewed as a 

permutation of the coordinate indices of the vectors in V (the same per- 

mutation for each vector) coupled with multiplying some (or none) of the 

coordinates by minus one. The set of monomial transformations which 

send all the vectors in C(q) onto vectors in C(q) form a group denoted by 

G(q).  In [4] it was shown that G(q) contains PGL?(q). 

J 
...X. 
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In section II of this paper we construct two subcodes of C(q) 

denoted by R (q) and R (q).  Every vector in R (q) is invariant under a 

monomial transformation T in C(q) of odd order s where s divides q + 1. 

Man  R (q) is invariant under'T but not vector-wise invariant.  The 
M 

dimensions of R (q) and R (q) are determined and relations between these 
C |i 

subcodes are given.  In section III an isomorphism if, constructed between 

2(H-2 
R (q) and a subspace of W = V ' s  .  It is shown that the image of 

R (q) is a seli-orthogonal subspace of W.  In section IV the isomorphic 
a 

images of R (17) (O(T) = 3) and R (29) (o (T) = 5), are both demonstrated 

to be equivalent to the (12, 6) Golay ode. 

II.  In this section we construct two subcodes of C(q)> R (q) and R (q) 

with the following properties.  Every vector in R (q) is invariant under 

a monomial transformationr in G(q) where the order of T is an odd number 

s dividing q + 1.  Further. R (q) is also invariant under but not vector- 
M 

wise  invariant.     The dimensions  of R    and  R    are determined,   and  relations 
0     ti 

between them are given. 

In [4] it was shown that the mapping sending a monomial transformation 

T in G(q) onto the permutation T it induces on the coordinate indices is a 

homomorphism of a s ;bgroup of G(q) onto PGL^q) whose kernel has order 2. 

For the rest of this paper T denotes a monomial transformation in G(q) of 

odd order s where s divides (q + 1) such thatT is in PGL2(q) and the order 

ofT equals the order of T . 

Lemma 1.  If s is an odd number dividing (q + 1), then there exists a 

transformation T in G(q) or order s.  Further W  is in PGI^«!)- 

\ 

•'•-     - "■ i < fcW ^ - 
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Proof:  By [1] it is known that PGL?(q) contains a cyclic subgroup of 

order -*—^— .  Hence this subgroup contains an element T of order s 

when s is any odd number dividing (q + 1).  The monomial T in 6(q) which 

maps into W  by the homomorphism described above is either of order s or 

2 
2s.  If it is of order s we are finished.  If T is of order 2s then T 

_2 2 
is of order s, T  is also of order s (since s is odd), T    is in PGL (q) 

and the Jecnma is demonstrated. 

The subcodes R (q) and R (q) are the ranges of two linear transforma- 

tions  a  and p defined for x in ^(q) as follows. 

XO = X + XT + ... + XT"" 

X(i = x - XT 

Ever, though a and p are linear transformations, they are not monomial 

transformations;  they are useful in obtaining information about T.  Let 

K (q) denote the kernel of o and K (q) the kernel of u. 

Theorem 1  R„(q), R rq), K (q), K (q) are subcodes of C(q) such that 
G       p.       O       |J, 

1) R (q) is contained in K (q) and R (q) is contained in K (q), and 

2) T leaves R (q) invariant and T leaves every vector in R (q) 

invariant. 

Proof:  It is clear that R (q), R (q), K (q) are subcodes since they 
-    M-    a 

are vector subspaces contained in C(q).  If xo is in R (q) then (xa)n = 

s-1 8-1. s-1 

s-1 

(X + XT + ... + XT    V = (X + XT + ... XT " ) - (XT + XT  + . . . + XT 

+ x) = 0 so that R (q) is contained in K (q).  Similarly R (q) is 
0 ►» M 

contained in Ka(q).  I< m  is in R (q), then (xa)T = (x + XT + ... + XTS J
)T 

2        s-l 
XT + XT + ... XT   + x = xa and we see that T leaves every vector in 

2 
R0(q) invariant.  Since (XH)T = XT - XT , T leaves R (q) invariant and 

the theorem is proved. 

j -A  a Ml  
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Remark:  When s is divisible by 3, R0(q) is contained in K (q) 

Proof:   If y is in R (q), y = xo = x + XT + o.. + XT 

s-1 
(x + XT + ... XT   )a = sy = 0  (mod 3). 

s-1 
Hence ya = 

Lemma 2.  T is a product of disjoint cycles of length s.  Further, if 

(i, , .... i ) is such an s-cycde for the left coordinate indices of V, then 
Is 

(i ', ... , i ') is such an s-«^cle for the right coordinate indices of V. 
X s 

Proof:  By their construction [4] the transformations in PGL„(q; act on 

the leit coordinate indices (and simultaneously on the rig.i  coordinate 

indices) as transformations on the proiective line.  Since s is an odd 

number which divides q + 1, T is either completely a product of disjoint 

cycles of length s or a product of disjoint cycles of length s with ks 

fixed points.  But a projective transformation with three fixed points 

is the identity.  Hence ~  can have at most two fixed points on each side 

of coordinate indices.  Since s divides q + 1, the number of left coordi- 

nate indices (and the number of right coordinate indices), this it   only 

possible for k = 1 and s = 2.  The lenmia follows from the fact that s is an 

odd number. 

We let J be a set of left coordinate indices with the property that 

J contains exactly one index from each of these s cycles. Note that 

In order to determine the dimension of R (q) and R (q) we introduce 
a      n 

the following terminology. We let the vectors in the basis [I, S ] be 
q 

denoted by (e , c(e.)) where e. is the i— row of I and c(e.) is the i— 

row of S . 
q 

.*! I  I  >^  • c — 
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Theorem 2.  dim R (q) = (3JL_1) and dim R (q) = (3 + LHg ' D 
0        s ^,/ s 

Proof:  Consider the set of ^ ' vectors f (e + e T + ... + e T8"1 

s lK i 3 j 
s-1 -i 

c(ej) + C(«^)T + ... + 0(6^)7  )] for jej.  since the order of T equals 

the order of 7, •. ^ - •. T , I « 1 S s - 1, so thai   (e. + e.T + ... + 
*     J J   J 

s ~ 1 
e T  ) ^ 0 fcr each j e J.  Hence by the definition of J, these vectors 

are linearly independent.  Clearly they span R (q), and it thus follows 

that dim R^Cq) = |j| = 3_+.JL .  similarly { (e./ - e.T^1), (c(e.)Tk - 
k+1 J     J j 

cCe )T   )] for jeJ, k = 0, ... , s - 2 is a basis of R (q).  Hence dim 

R (q) . Cl t \Uf - p. 
[1 s 

Remark: When T has even order (4  2) which divides ^ "t 1\   all the results 

of this paper hold when the order of T equals the ordar of ?. Whep 

the order of T equals twice tht order of T,   chen it is possible that 

Theorem 2 does not hold since the basis vectors described above can be 

zero. 

Corollary 1.  R^q) = K (q) and R (q) = K (q). 

Proof: By Theorem 1, R (q) is contained in K (q) and RG(q) is contaired 

in K (q).  In general, dim R (q) + dim K (q . = q + 1 = din K (q) + dim R (q). 
^ M-        M- er        a 

By Theorem 2, dim R (q) = ^^    and din R (q) = ^ t  LUl Z  l\     Hence 
os ^ s 

d<  R (q) = dim Ko(q) and dim K^q)  = dim K (q) and the corollary is demon- 

strated. 

Note that since 3 divides (q + 1) for every q ■ -i(mod 3), every symmetry 

code has a monomial transformation of ^-der 3 leaving it invariant. 

III. The isomorphic image of R . 
a 

In this section we construct a linear transformation cp from V onto 
2cH-2 

W = V3  s  where s is again an odd number dividing q + 1 with the following 

• I Ai 
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properties. The dimension cf (p(R ) equals the dimension of K^, the 

veight of cp(x) for x in R is the weight of x divided by s, and (p(Ra) 

is a self-orthogonal subspace of W. 

In order to do :his we let J be as in spction II, and let J' be th 

2(n+1) 
elPT.ants in J with dashes on them.  Note that J UJ' contains -*^— 

elements.  We consider the elements in J to have the same orderi ig they 

had in GF(q)U [•).  With this ordering we label the left half of the 

coordinate indices in W with the elements from J, and the right half with 

the elements from J'.   We denote the unit vectors in W by e^. , j in J 

and e.', i' in J*. 
J 

Lemma 3.  If XT ■ x, then the components of x on a cycle of T are either 

all zero or all non-zero.  Further, if XT = x and yi = y, then on the 

cycles of T on which the components of both x and y are nor-zero, the com- 

ponents of x equal plus or minus the components o£ y. 

Proof:   Let (i ,...,i ) be the coordinate indices of a cycle of T.  Let 
1     ■ 

x  be the i — component of x.  If XT » x, then all the components of x 
i.        j 

on this cycle are determined by x.  and T.   If yT = y also, then Che 

components of x on this cycle equal the components of y on this cycle of K 

y      If x = -y  the components of x on this cycle are the negatives 

of the components of y.  Since these are the only possibilities, the lemma 

is proved. 

2q+2 

Theorem 3.    There is a linear transformation cp from V onto W = V3 

such that 1)  dim cp(Ro(q)) ■ dim Ra(q) - A3-^  ■■ , 

2) ' w(cp(x)) - *&  . 

V_  
I 

s 

and 
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Proof:   We let ei and e ', i€GF(q) Ufa] denote the unit vectors in V. 

We define cp on these unit vectors as follows. 

If jeJ,  cp(e ) = e .       If i^j,  cp(e.) = 0. 

Ifj'eJ', cp(e.,)=I.,.     If i^J',  cpCe.') = 0. 

Define cp on the rest of V linearly.  Clearly (p is a linear transformation 

from V onto W. 

Recall that {(e + er + ... + e.TS" , c(e.) + c(e.)T + ... + c(e.)iS'1)], 

jeJ is a basis of R (q).  Since cp maps these vectors onto linearly inde- 

pendent vectors, dim cp (R (q)) = dim R (q) = iStil by Theorem 2. 

Theorem 1 tells us that XT = x for all x in R (q).  By Lemma 3 we 

know that the components of x on a cycle of T are either all zero or all 

non-zero.   Since cp projects on precisely one component from each 

s -cycle of T, w(cp (x)) =  ^ . 

It was proven in [4l that C(q) is a self-orthogonal subspace of V so 

that R (q) is certainly a self-orthogonal subspace of V. Even though cp 

does not preserve the property of self-orthogonality, we can prove that 

9(R (q)) is a self-orthogonal suSspace of W. 

Theorem 4.     cp(R (q)) is a self-orthogonal subspace of W. 

Proof:   Let x and y be vectors in W sich that x = (a, a-,  „ ) and 
1     2q+2 

s 

y = ^1'• • • »'J2q+2 '*  Then the inner Product of x and y, denoted by (x,y), is 

s 

/ ,  a.ß.Hmod 3).   As is usual, x and y are orthogonal to each other 

i=l     ' 

-    - '"'•-       a-U I il  fcfc  '  -—        —  -   - — '  —^A. 
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if (x,y) = 0.  In order to prove Theorem 4 we need to show that (x,y) = 0 

for all x,y in cp(R (q)) (x can also qual y).  In order to prove this, 

we introducp the inner product of x and y over the integers, denoted by 

s 

[x,y], where [x,y] equals ;  a.ß. by definition.  We iefine [x,y] in 

1-1 

a  similar   fashion   for  x  and  y in V. 

The proof  of Theorem 4  }| divided into  two cases.     The  first  case  is 

, + 3 does not divide s.  Jf x and y ore in R (q), then x = x + x T + 
1 oil 

s-1 s_l 
K^T   and y = y^ + y^^t + ... + y^   for some ■•  and y  in C(q).  By 

Lemma 3, all the elements in R (q) which are not zero on a particular cycle 

of T have the same or opposite components on that cycle. Hence [x,y] = rs 

where r is the number of s-cycles of 7 (in both the left and right coordi- 

nates) in which both x and y have non-zero components. Since (x,>) =03 

divides rs, but by assumption 3 does not divide s so that 3 divides r. By 

the definition of 9, lcp(x), ^(y)] = r so that (cp(x), cp(y)) = 0 for all x,y 

in Ra(q). Hence cp(Ro(q)) is self-orthogonal in this situation. We now 

consider the case that s = 3j, i.e,, T3j = 1,  We let x and y be in R (q). 

and we have X=X+XT+...+XT 3j-l 31-1 
.   y =  y1 +  VjT +   ...   y^   J       for 

:
1.   y.   in C(q).     Then 

3j-l 31-1 

[x.y]   -^     [x1.   y/] *)       [KjT.y^1] 
3J-1 

3j-l 

1^0 

3j-l 

+ -••+y [X.T3^1^^1] 
1%D 

1=0 i=0 i=0 

by rearranging  terms.     Now [u,v]   =  [UT
1
,  VT

1
]   for  all u and v in V 

•        -    '   IM rift.'« 
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Bince T  is a monomial transformation over GF(3).  Hence [x,y] ■ 3j[x , 

Oil * 

y^ + SjUj.y^] + ... + 3j[x1,y1T 
J" ].  Sine« K and JTjT (l-0,..,3j-l) 

are all in C(q) which is self-orthogonal, each [x , y T ] is divisible 

by 3 sc that [x,y] = 9r for some r. Each cycle of T is a 3j-cycle, aud 

by the definition of cp, cp projects onto one coordinate from each 3j-cycle 

so that [cp(x), cp(y)] ■ 3r.  Hence (((»(x), cp(y)) = 0, and cp(R (q)) is a 

self-orthogonal subspace of W for this case also, 

IV.  Invariant subcodes of C(17) and C(29) are isomorphic to the Golay code, 

In this section we apply these ideas to C(17) and C(29).  The T for 

C(17) has order 3 and the T for C(29) has order 5.  We describe these two 

monomial transformations explicitly, and exhibit bases for R (17) and 

cp(Ro(17)). 

In order to exhibit these monomial transformations we introduce the 

following convention.  We let x(i) times a column index   mean that we 

multiply the column by x(i) where x(i) ■ 1 for i a quadratic residue, and 

X(i) ■ -1 for i a non-residue.  This convention is used in order to avoid 

confusion with negatives in GF(17). 

We can represent T as a monomial transformation on the columns of 

V as follows. 

16 
T(») = 0,  T(16) = »;  T(i) = X(i+1)  (T^Y ), i ^ oo, 16; 

16 T("') = 0',  TCIÖ') » oo-; T(l«) = X(l'+1) {J*),    f 4   m\    16'. 

The  generators  of  the  subgroup of 0(17)  which  is   isomorphic  to  PGL^l?) 

are given   In [4 , p.   131].       It  is  easy  to verify that  T  is  u product  of   two 

-U. J—A - *- 
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of these generators so that T is in G(17).  A straightforward check shows 

that T has order J.   If we rearrange the columns of V to correspond to 

the cycles of T, the following is a basis of R (17). 

- 0  16     1  8  15 2   11   7 3 4   10    5   14  9     6   12   13 •>'   0'   16' r 3 IV 2' ir 7'     3'   4 in' y i ■.'   9' '   1'' 13 

1   1     1 1          .    | -1   -1   -1 i   -i ■! i -1 1-, ,        ,1 •1     1 i 

I i ;   11 i l 1 1   -l i ; -i - 1 ! -i '•        1 i -; -i 

i -i i i 1     1     1 i 1 ' 1    -1 i     i -1   i   1 -1   -i j 
1 ll  1.1                    | I     1     1 • i - •ill   -1 i    -i - i   L             i -i   i     ; 

1                     l-Ll! •1   -1   -1 ■ i - -1 i   -i I 1 ■ 1     -1   ! i -i .. 

1 
I 
,                    1-1-1 -I   -1  -1 i 1 -i - i i ' - 1     -l • i   i i 

From this we get the following basis for cp(R (17)) by choosing 

J = {»,1,2,3,5,6}. 

I 

CO 1 2 3 5 6 oo'     1' 2' 3' 5' 6' 

1 

1 

1 

1 

1 

1 

-1 

1   ] 

1 -] 

-1 -] 

-1   1 

1 

-1 

1 

-1 

-1 

-1 

-1 

I 

1 

1 

-1 

1 

-1 

1 

-1. 

It is known [4] that the minimum weight of C(17) is 18, so that the 

minimum weight of cp(R (17)) is 6.  It follows from the theorem in [2] 

that cp(R (17)) is equivalent to the Golay (12, 6) code over GF(3). 

A monomial transformation T of order 5 in G(29) is given by the 

following. 

28, T(co) = 0, T(24) = »j  T(i) = x(i+5) (^), i 4   », 24, 

28 
T^-O',  T(24,)=oo';  Td-) = x(i. + 5)(-£_)> i. ^ co-, 24'. 

As  in  the previous  case  it can be veri-fied  that  T  is  a product of 

k^a. ii    i ii >fci 
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generators of the subgroup of G(29) which is isomorphic to PGL2(29). 

Given T, a basis of Ra(29) can be computed similar to the basis of 

R (17).  The minimum weight in C(29) is 18 and since the weight of 
o 

every vector in R (29) is divisible by 5, the minimum weight of 
o 

R (29) must be at least 30.  It is exactlv 30 since the basis vectors 
o 

have weight 30.  Hence the minimum weight of cp(R (29)) is 6.  It then 

follows as above that cp(R (29)) is equivalent to the Golay Code. 

I wish to thank Jean-Marie Goethals for pointing uut to me that 

the results of this paper are applicable to a wider class of monomials 

than I originally stated. 



-13- 

Bibliography 

1. Dickson,   L.   E.   (1901,   1953)   "Linear Groups  with  an Exposition  of 
the Galois  Field Theory",   reprinted by Dover  Publications,   Jew York. 

2. V.   Pless,   "On   the uniqueness   of  the Golay codes",   J.   of  Combinatorial 
Theory,  5   (1968),   215-228. 

3. V.   Pless,   "On  a  new  family of  symmetry  codes   and  related  new  five- 
designs".   Bulletin  of  the American  Mathematical  Society,   Vol.   75, 
No.   6   (1969),   1339-1342. 

4. V.   Pless,   "Symmetry codes  over GF(3)  and  new  five-designs",  J.  of 
Combinatorial Theory.   12   (1972),   119-142. 

-—    ■  * -^- ^M 


